
ISRAEL JOURNAL OF MATHEMATICS, Vol. 22, No. 2, 1975 

THE ARTIN-REES PROPERTY AND HOMOLOGY 
BY 

KENNETH S. BROWN t AND EMMANUEL DROR 

ABSTRACT 

The Artin-Rees property for a finitely generated nilpotent group G is used to 
prove that H,(G. M)~ H,(G, ~l) for any finitely generated G-module M. 
where A~/ is the completion of M with respect to the augmentation ideal of 
Z[G]. Applications to topology are given. 

Nouaz6 and Gabriel ([15], 2.7 and 2.8) have shown that the classical 

Artin-Rees lemma for commutative noetherian rings admits a generalization 

which applies, for example, to the group ring of a finitely generated nilpotent 

group. The purpose of the present paper is to give some applications to 

homological algebra and topology of this generalized Artin-Ress lemma. These 

applications concern maps (of modules or spaces) which induce homology 

isomorphisms. 
In Section 1 we describe the Artin-Rees property and give the proof that it is 

satisfied by finitely generated nilpotent groups. 

Section 2 contains the applications to homological algebra. The main result, 

which includes a theorem of Dwyer's [8] as a special case, is the following (2.2, 

Th. 3): I[ G is a finitely generated nilpotent group and M is a finitely generated 
G-module, then H.(G, M) ~ H.(G, I(-t), where 1(4 is the completion of M with 
respect to the augmentation ideal o[ Z(G ]. This result is used in 2.3 to show that 

for a large class of groups, including all finite groups and all finitely generated 

nilpotent groups, ~lr is equal to the HZ-Iocalization of M in the sense of 

Bousfield [2], for any finitely generated G-module M. 

In Section 3 we illustrate how the results of Sections 1 and 2 can be used in 

topology by proving (a) a vanishing theorem for certain homology groups 

associated to a prenilpotent space (3. I, Th. 5) and (b) a theorem concerning the 

homotopy groups of a (higher dimensional) knot complement (3.2, Th. 6). 

Finally, an appendix contains a result needed in 3. ! concerning the homology 

(mod ~) of a regular covering space, where cr is a Serre class of abelian groups; 

as an immediate consequence, we obtain a generalization to nilpotent spaces of 

Serre's mod c~ Hurewicz theorem for simply connected spaces. 
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1, The Artin-Rees property 

Let R be a left noetherian ring and I a two-sided ideal. If M is a (left) 

R-module, the I-adic topology on M is the unique topology which is compatible 

with the group structure and in which { l 'M}~o  is a fundamental  system of 

neighborhoods of 0. (Equivalently, a neighborhood base at 0 is formed by the 

submodules M'  of M such that M / M '  is l-nilpotent, i.e., is annihilated by a 

power of I.) We will say that ! has the (left) Artin-Rees property if for  every  

finitely generated (left) R-module M and every submodule N, the l -adic 

topology on N coincides with the restriction to N of the I-adic topology on M. 

The following reformulation of the definition is essentially due to Gabriel (cf. 

[10], V, w Prop. 9): 

PROPOSITION 1. The following conditions on I are equivalent: 

(i) I has the Artin-Rees property. 

(ii) If M is a finitely generated R-module which contains an essential 
I-nilpotent submodule, then M is I-nilpotent.* 

(iii) If  M is a finitely generated R-module which contains an essential 
submodule N such that IN = 0, then M is l-nilpotent. 

(i) r (ii): The proof is identical with Gabriel 's proof (loc. cit.), so we omit 

it. [Take C, in the notation of [ 10], to be the category of l-ni lpotent  modules.] 

(ii) :::), (iii): Trivial. 

(iii) =), (ii): Let M be as in (ii) and let N = {x ~ M: Ix = 0}. Then it is easy to 

verify that N is an essential submodule of M, so (ii) follows from (iii). 

We now specialize to the case where R is the integral group ring Z[G] of a 

group G, and I is the augmentation ideal. We will say that a G-module  is 

nilpotent if it is I- nilpotent, and we will say that G has the Artin-Rees property 

if Z[G] is noetherian and I has the Artin-Rees property.  (Note that there is no 

need to distinguish here between the left and right Artin-Rees properties,  since 

Z[G] has an anti-automorphism which takes I onto itself.) 

The following theorem is a special case of a result due to Nouaz6 and Gabriel 

([15], 2.7 and 2.8); we will give the proof for the convenience of the reader. 

' Recall that N is said to be an essential submodule of M if every non-zero submodule of M 
intersects N non-trivially. 
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THEOREM 1. I[ G is finitely generated and nilpotent, then G has the Artin- 

Rees property. 

The proof  is based on the well-known fact  (cf. [12], proof  of Theorem 10.2.4) 

that G has a central series 

G = G, ~ G: ~ .-. ~ G~ = {l} 

such that each quotient Gi/G,., is cyclic. In particular, it follows easily that 

Z I G / i s  noetherian (cf. [16], p. 136). Theorem i now follows, by induction on 

the minimal length n of such a series, from: 

PROPOSmON 2. Let G be a group such that Z[G] is noetherian. If G has a 

central cyclic subgroup C such that G/C has the Artin-Rees property, then G 
has the Artin-Rees property. 

We will verify condition (iii) of Proposit ion 1. Thus we must show that if M 

is a finitely generated G-modu le  which contains an essential submodule  N on 

which G acts trivially, then M is nilpotent. We will do this by showing (a) that 

M is nilpotent as a C- module and (b) that M c, the set of e lements  of M fixed by 

C, is nilpotent as a G/C-module (and hence as a G-module) .  Assuming for the 

moment  that (a) and (b) have been established, we complete  the proof  as 

follows. Let r = 1 ~- t, were t is a generator  of C. Then r is a central e lement  of 

Z[G] and multiplication by r is a G-module  endomorphism of M whose kernel 

is M c. Using the exact  sequences 

r 

O--~MC----~kerr n --. k e r r  n-,, 

we conclude f rom (b) (by induction on n) that ker r ~ is a nilpotent G-module  

for each n => 1. Since k e r r "  = M for large n by (a), M is indeed nilpotent. 

It remains to prove  (a) and (b). For (b) we need only note that M c is a finitely 

generated G/C-module which contains N as an essential submodule,  hence 

M c is nilpotent by the assumption on G[C. To prove  (a) we consider the 

ascending chain {ker r n }, ~, of submodules  of M. This chain must stabilize since 

M is finitely generated,  and it follows easily that k e r r "  fq im r ~ = 0 for  large n. 

Since N C ker r" and N is essential,  we conclude that im r ~ = 0, as required. 

REMARK. If G is only assumed to be polycyclic instead of finitely generated 

nilpotent, then G need not have the Artin-Rees property.  For  example ,  let k be 

the field Z/p Z, where p is an odd prime, let M be a two-dimensional  vector  

space over  k, let M '  be a one-dimensional  subspace,  and let G be the group of 

au tomorphisms of M which act as the identity on M'. (Thus G is the matrix 
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group (A :).) Then one verifies easily that M' is an essential G-submodule of M, 

but that M is not a nilpotent G-module (in fact, IM = M),  so the Artin-Rees 

property fails. (Note that G is polycyclic, being the semi-direct product of the 

sdditive and multiplicative groups of k, both of which are cyclic.) 

2. Applications to homological algebra 

2.1. Tor and Completion 

Let R be a ring and I a two-sided ideal. If M is a left R-module, we denote 

by A~/ the completion of M with respect to the I-adic topology: 

~ / =  lira M/I"M.  
<...._ 

We denote by c~ the canonical map M--> ~/. In case M = R, the completion R is 

a ring and a : R --> R is a ring homomorphism, by means of which we regard R 
as an R-bimodule. 

For any (left) R-module M we denote by M the R-module obtained from M 

by extension of scalars: 

= R | 

There is a canonical map/~:M--->M and, since 2f/ has an obvious R-module 

structure, there is a unique R-module homorphism y;~r--->A~r such that 

M --> ~r 

a ' ~  / 3 /  

PROPOSITION 3. Assume that R is left noetherian and that I satisfies the left 

Artin-Rees property. 

(i) The functor M ,-, f/l is exact on the category of finitely generated left 

R-modules. 

(ii) If  M finitely generated then 3/; ~I---> MI is an isomorphism. 

Off) R is flat as a right R-module. 

(iv) Let M be a finitely generated left R-module and let I| be the kernel of  

a :M--> I(/l, i.e. I| = A ,>_11"M. Then I .  I| = I| and I~M is the largest 

submodule of M with this property. 

These consequences of Artin-Rees property are proved exactly as in the 

commutative case. See, for example, [1], Props. 10.12, 10.13 and 10.14, and the 

proof of Prop. 10.17. 
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NOTE. Proposition 3 has an obvious analogue for a right noetherian ring and 

an ideal with the right Artin-Rees property.  This analogue will be referred to as 

Proposition 3,  

We can now prove the main result of this section: 

THEOREM 2. Assume that R is left and right noetherian and that I satisfies 
the left and right Artin-Rees properties. For any left R-module M,/3 induces an 
isomorphism 

Tor,( R / l, M)--~ Tor,( R / I, /Q); 

if M is finitely generated, then ct induces an isomorphism 

Tor,( R [ l, M)--~ Tor~( R / I, Ir 

In view of Proposition 3 (ii), it suffices to prove the assertion about/3. Since/~ 

is a flat right R-module (Prop. 3(iii)), the functor  M ~ / ~  is exact,  and hence 

the functors Tor~(R/l ,  ICt), as functors of the variable M, form a connected 

exact sequence of functors,  in the sense of [4], Chap. V, w It therefore  suffices 

to show (loc. cir., Prop. 4.4) (a)) that /3 induces an isomorphism 

R/ I~RM--~R / IQRI~I ,  and (b) that Tori(R/I,l~4)=O if i > 0  and M is free. 

To prove (a), consider the commutat ive square 

8~RM 
R/ I@RM , (R/I@RI~)@RM 

R/I@R/3 It 

R/I~RI~I R t i e r  (I~ ~RM),  

where 8:R/I--->R/I(~RI~ is the canonical map, x ~ x @ l .  Now Prop. 3,(ii) 

implies that ~ can be identified with the canonical map of R/ I  to its l-adic 

completion as a right R-module;  but R/ I  is complete,  so 8 is an isomorphism 

and (a) follows at once. To prove (b), it suffices to consider the case M = R, in 

which case the result follows from the flatness of /~  as a left R-module (Prop. 
L(iii)). 

COROLLARY I. The following are equivalent for a map f:M---~ N of finitely 
generated R-modules : 

(i) The map f ,:Tor~(R/I ,M)--~Tor~(R/L N) induced by f is an isomorph- 
ism for all i >-_ O. 

(ii) fo is an isomorphism and fl is an epimorphism. 
(iii) f induces an isomorphism ]: I(t-~IQ. 
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In fact, (i) :::> (ii) trivially; (ii) :ff (iii) by the argument of [5], proof of Prop. 

5.2 (which does not require the Artin-Rees property or finiteness of M and N);  

and (iii) :::> (i) by Theorem 2. 

In case N = 0, the implication (ii) ::), (i) of Corollary 1 yields: 

COROLLARY 2. If  M is a finitely generated left R-module such that 
Tor~(R/I ,M)  =0 ,  then T o r ~ ( R / I , M ) = 0  for all i. 

REMARK. The isomorphisms 

R / I @R M -~ R / I @R I(/I 

and 
R/I @RM--~ R/I @RI(I 

of Theorem 2 can be proved under much weaker hypotheses than those of the 

theorem, namely, we need only assume that I is finitely presented as a right 

R-module  (no hypotheses on M). One proves the first isomorphism by 
computing R/IQR~(I by means of the short exact sequence 

0---~ li,_m"'Tor~ (N, M,)--~NQR lim M, ---, lim N@R M~ ----~ 0 
<__. <-.-- 

(cf. [17], Th. 2), valid for any tower of R-modules  {M~} such that li~_m"'M, = 0 

and for any right R-module  N such that there exists an exact sequence 

F2---,F~---~Fo--->N---~O with F~ finitely generated and free. The second 
isomorphism can be deduced from the first, applied with M = R. 

2.2. The homology of a finitely generated nilpotent group 

Let G be a group with the Artin-Rees property,  e.g., a finitely generated 
nilpotent group (Section i, Th. I). Then all of the results of 2.1 apply with 

R =Z[G] and I equal to the augmentation ideal. In particular, for any 

G-module  M we have G-modules  57/ and M and maps a :  M---~AT/ and 

/3: M---,M, and Theorem 2 and its corollaries yield: 

THEOREM 3. For any G-module M, fl induces an isomorphism 

H. (G,  M)--7-> H. (G, /~ ) ;  if M is finitely generated, then a induces an isomorph- 
ism H.(G,  M)---, H . ( G ,  37/). 

COROLI.ARY I. The following are equivalent for a map [: M ~ N of  finitely 
generated G-modules : 

(i) Themapfi:H~(G,M)---~Hi(G,N)inducedbyf isanisomorphismforal l i .  
(ii) fo is an isomorphism and [~ is an epimorphism. 
(iii) f induces an isomorphism ]: 1(,t--~1Q. 
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COROLLARY 2. (Dwyer [8]). If M is a finitely generated G-module such that 

Ho(G.M)=O, then HI (G .M)=O for all i. 

2.3. HZ-Iocalization for modules over prenilpotent groups 

Let G be a group. We recall some terminology from [2]. A map f :  M---~N of 

G-modules  is called an HZ-map if the induced map[~:Hi(G,M)---~H~(G,N)is 

an isomorphism for i = 0 and an epimorphism for i = I. A G- module M is said 

to be HZ-local if every  HZ-map  f: Nj---~N2 induces an isomorphism 

Hom(N2, M)--~ Hom(N, ,M) .  Finally, an HZ-localization of a G-module  M is 

an HZ-ma p  f :M---~M'  with M'  HZ-Iocal.  It is easy to see any two HZ-  

Iocalizations of M are canonically isomorphic. Moreover,  it is proved in [2] that 

every  G- module M admits an HZ-localization,  but we will not need to use this 

fact. 

We call a group G prenilpotent if the lower central series {F~G}i~, stabilizes, 

i.e., if I',G = F,.,G for  large i. (Here F~G = G and F,.~G = (G,F,G), cf. [12], 

Chap. 10.) For example,  every finite group is prenilpotent. The purpose of this 

section is to prove: 

THEOREM 4. If G is a finitely generated prenilpotent group and M is a finitely 

generated G-module, then the canonical map a" M--~ IVI is the HZ-localization 

of M. 

(As in 2.2, J~/ is the l-adic completion of M, where I is the augmentation 

ideal of Z[G].)  

We will need the following three lemmas: 

LEMMA 1. For any group G and any G-module M, the l-adic completion 1(4 
is HZ-local. 

In fact, it is immediate f rom the definition that an inverse limit of local 

modules is local, so it suffices to show that any nilpotent module M is local. 

Assume, then that InM = 0 and let .f: N, ~ N2 be an HZ-map.  Then/"  induces 

an isomorphism Nt/I  ~, --~ N2/I"N2 ([5], Prop. 5.2), and the lemma follows from 
the diagram 

Horn(N2, M) . ~  Horn(N, ,  M) 

Hom(N2/I"N2, M) . ~  Hom(N, / I "N, .  M). 
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LEMMA 2. LetGbeapreni lpotentgroupandle t  F=F,G[orlargei .  I [ M i s a  
G-module, then F acts trivially on M/ I "M for all n. 

This follows from the elementary fact that if 3' (E F,G then 3' - I ~ I". (See, 

for example, [14], Chap. I, w Th. 3.2; alternatively, prove this fact by 

induction on n, using the first lemma on p. 138 of [16].) 

LEMMA 3. If  G is finitely generated and prenilpotent, then the abelianization 
Fab of F is a finitely generated G/F-module, where F is as in Lemma 2. 

(The action of G/F on F,b is induced by the conjugation action of G on F.) 

In fact, if S is a finite set of generators of G, then it is easy to see that FiG is 

the normal subgroup of G generated by t he / - fo ld  commutators  of elements of 

S. Thus F is finitely generated as a normal subgroup of G, and the lemma 

follows at once. 

PROOF OF THEOREM 4. In view of Lemma l, it suffices to show that 

a :  M---).~7/is an HZ-map.  Let  F be as in Lemmas 2 and 3 and let v = G/F. Note 

that ), is niipotent. Let N be the u-module Ho(F,M) = M/IrM, where Ir is the 

augmentation ideal of Z[F]. It follows easily from Lemma 2 that h~/ is a 

u-module and that, moreover ,  h~f can be identified with/Q. We therefore  obtain 

a commutat ive  diagram 

H~(G,M) or, ~) H~(G,I~I)= H~(G,I~) 

where 4), and toi are induced by the projections G ---) v and M--> N and a, (resp. 

a ',) is induced by the canonical map ct:M---)I(-I (resp. a ': N -->/V). Since a'~ is 

an isomorphism by Theorem 3, the proof will be complete if we show that 

4)o, ~Oo, and to, are isomorphisms and that 4), is an epimorphism. 

Now it is trivial to verify that 4)o and too are isomorphisms, and 4), is easily 

seen to be an epimorphism by means of the Lyndon-Hochschi ld-Serre  spectral 

sequence 

E~q = H,,(v,H,,(F,M)) ~ Hp+,,(G,M). 
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Finally, to see that ~, is an isomorphism, we again use the spectral sequence, 

but with coefficient module /V, and we obtain an exact sequence 

Ho(u, F,h~)z/Q)---, H~(G, N) ~ H,(u, IQ)---~O. 

But Ho(v, F.b@/(/) = F.b@~/Q (this follows at once from the definition of tensor 
product), So it suffices to show that F ,b@~ = 0 for any finitely generated 

u-module A. Now A ~ F,b~,.4 is right exact (2. I, Prop. 30)), so we may 

assume A = R = Z[u]. But then F~b@~,4 is simply the completion of the right 

R-module F,b (Prop. 3,(ii) and Lemma 3); since ( G , F ) =  F, we conclude that 

l " ,b l  ----- l-'.b, SO I~.b = 0, as required. [An alternative proof that F,b@~,4 = 0, which 

does not depend on the Artin-Rees property or on the finiteness of A, can be 

based on the short exact sequence given in the remark at end of Section 2.1.] 

3. Applications to topology 

The applications we will give concern the structure of homology equiva- 
lences, i.e., of maps which induce isomorphisms on integral homology. 

3.1. Prenilpotent spaces 

Recall that a CW-complex X is said to be nilpotent i f X  is connected, ~r,X is 

nilpotent, and cruX is a nilpotent r for n > I. (Thus zr, X for n > 1 is 

annihilated by some power of the augmentation ideal of Z[~r,X], cf. Section I.) 

A CW-complex X is called prenilpotent if there is a homology equivalence 

f:  X ~  Y with Y niipotent, or, equivalently, if the H , ( -  ,Z)-localization of X 

in the sense of Bousfield [2] is nilpotent. Prenilpotent spaces are studied in [7], 

where it is shown that, for CW-complexes of finite type (i.e. with finitely many 

cells in each dimension), one can give an intrinsic characterization of preniipo- 

tence. See also [9], where some examples of prenilpotent spaces are discussed. 

In case Y is the circle S t, X is cal!ed a homology circle. The analysis of 

homology circles [6] depends heavily on the fact that (for trivial reasons) the 

Serre spectral sequence of [:X---~S' collapses, i.e. H~(S~,Hq(F))=O for 

q > 0, where F is the homotopy fibre of [. (Note: We are dealing here with 

homology with local coe~cients.) The purpose of this section is to prove an 

analogous collapsing theorem in the general case: 

THEOREM 5. Let X be a prenilpotent space o[ finite type and let F be the 

homotopy fibre of  a homology equivalence [: X ~ Y with Y nilpotent. Then [or 
all q > 0 and all p, 
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The proof will use the following topological analogue of Theorem 3 (Section 

2.2): 

PROPOSITION 4. Let Y be a nilpotent space with ,r, Y finitely generated. If  M 

is any rr~ Y-module, then H . (  Y, M --~ H , (  Y, .JQ); if M is finitely generated then 
H . ( Y ,  M)--~ H . ( Y ,  I(4). 

(See Section 2.2 for the definitions of JQ and JQ.) 

The second assertion of proposition follows from the first, in view of 2.1, 

Prop. 3(ii). To prove the first assertion we use the refined Postnikov tower of Y 

([3], Chap. II, w Prop. 4.7): 
Pl 

""---> Yi---> Y,-l--'> "'---> Y, = K(v, I), 

where v = 7r~Y. Here p~ is a principal fibration with fibre F~ of the form 

K(A~, n~) where 2 =< n~ Zoo, and Y =[ im Yi. It suffices to prove by induction on 

i that H.(Y~, M) ~ H.(Y, . /Q) for any v- module M. The case i = l being true 

by Theorem 3, we may assume that i > l and that the result is known for Y~_,. 

Consider the map of Serre spectral sequences (with local coefficients) induced 

by the coefficient homomorphism M-->JQ: 

Hp(Y,_t, Hq(F, M)) ~ Hp.q(Y,,M) 

Hp(Y,_.Hq(F,.IQ)) ~ Hp+q(Yi. JQ). 

Note that the groups H~ (F,,--) which occur here are ordinary homology groups 

with constant coefficients [F~ is simply connected]; note further that the action 

of v = 7r, Y~-I on H~(F,--)  comes entirely from the action of v on the 
coefficient module. [The action of ~rl Y~-T on F~ (in the homotopy category) is 

trivial, since p~ is a principal fibration with connected fibre.] Therefore, in view 

of the flatness of /~  over R = Z[v] (2.1, Prop. 3(iii)), we have isomorphisms of 

v- modules 

Hq(F, IQ) = H4(Fi, I~ ~ M )  ~ R ~ H q ( F ,  M ) = Hq(Ft, M). 
R R 

The induction hypothesis now implies that the above map of spectral se- 

quences is an isomorphism on E 2, hence on E | which completes the proof. 

We will also need the following lemma: 

LEMMA. Let G be a group such that ZIG] is noetherian and let M and N be 

finitely generated G-modules, one of  which is finitely generated over Z. Then 

M ~ N and M * N are finitely generated G-modules. 
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(Here M @ N  and M * N are the tensor and torsion products over Z, with the 

usual (diagonal) action of G.) 

Assume, for example, that M is finitely generated over Z, and let (Fi)Jeo be a 

free resolution of N over Z[G], with each F~ finitely generated. Then M @ N  

and M * N can be computed as homology groups of the complex M@zF~ the 

lemma therefore follows from the easily verified fact that M@zZ[G] is finitely 

generated over G. 

PROOF OF THEOREM 5. We begin with two preliminary observations: 

(a) r Y =  v is surjective; hence, in particular, v is finitely 

generated and F is connected. This follows from the surjectivity of 

H j f : H , X - - ~ H , Y ,  by an argument analogous to that of Lemma 1 (a) of the 

appendix. [In fact. one actually knows ([5], Prop. 5.1 and first paragraph of 

Section 6) that *r,X is prenilpotent and that v-~ 7r,X/F, in the notation of 

Section 2.3.] 

(b) H,(F)  is a finitely generated v-module for each n. In fact, let p;  9 - *  Y 

be the universal cover of Y, and consider the pull back ] of [ to a map over ~': 

X ' -*X 

~ ' ~ y .  

P 

(thus X" is a regular covering space of X, with covering group v.) Then F is also 

the homotopy fibre of ~ Moreover, since v acts as a group of automorphisms of 

the map ~ the Serre spectral sequence 

E L  = lip( ~', Ha(F)) :~ H,§ 

is a spectral sequence of v-modules. Now H ( f ' )  is finitely generated over Z 

for all n by Cot. l of Prop. 5 of the appendix: and /-/(X)is finitely generated 

over v for all n, since the cellular chain complex of X is a complex of finitely 

generated modules over the noetherian ring Z(v]. 

Assertion (b) therefore follows at once by a standard mod g' spectral 

sequence argument (cf. [18]), where ~ is the class of finitely generated 

v-modules. [Note: the crucial point here is that if N is a finitely generated 

v-module, then Hp (~', N), which is a v-module via the action of v on 17" and on 

N, is finitely generated. This follows from the universal coefficient theorem and 

the above lemma.I 

We can now prove Theorem 5 by induction on q. Thus assume that 

E~. = Hp(Y.Ho.(F))= 0 for 0<  q ' <  q and all p. Then the edge isomorphism 
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H.(X)-~-~ H . ( Y )  implies that Eo~q = 0. (We are using here the fact that, by (a), F 

is connected.) But E~q= Ho(v, Hq(F)),  so Hq(F)  ̂ =  0, and hence (by (b) and 

Prop. 4) H , ( Y ,  H q ( F ) ) =  0 for all p, as required. 

3.2. Homology circles and knot complements 

Let X be a homology circle of finite type, and assume that zr = zr,X ~ Z. 

Let  a = ~r,X (n => 2) be the first non-zero higher homotopy group of X. Then a 

is a finitely generated zr-module and is per[ect, i.e., H0(zr, a ) =  0; moreover, 

these are the only conditions on a, since Kervaire [13] has shown that any 

finitely generated perfect 7r-module can arise in this way from a homology 

circle. Our purpose in this section is to give a similar analysis of the module 

/3 = ~r,§ Under suitable finiteness assumptions we will show that the I-adic 

completion/3 is determined by a and that there are no further conditions on fl 

(see below for a precise statement). In particular, the ' perfect part" I| (cf. 

2.1, Prop. 3 (iv)) can be arbitrary. 

We remark that the results of this section can easily be translated into results 

about (higher) knot complements. In fact, it is well-known that every knot 

complement is a homology circle. Conversely, if X is a homology circle which 

is a finite complex of dimension r, and if ~-IX is generated by the conjugates of 

a single element (e.g., if 7rzX=Z),  then X is (m - r)- equivalent to the 

complement of an (m - 2)-sphere in S m for sufficiently large m ([20], p. 17, Th. 

1.7). 
THEOREM 6. Assume  that H,+2(a, n) is a finitely generated ~r-module. Then 

/3 = lr,+~X is a finitely generated It-module and fl ~ H,§ n)  ̂ . Moreover, if 

~b :/3 -->/3' is a rr-module homorphism with/3'  finitely generated and r ; fl ---> [3' 

an isomorphism, then one can attach finitely many ceils to X to obtain a 

homology circle X '  such that f , :  rrjX--> rr~X' is an isomorphism for i <- n and is 

equivalent to ~b for i = n + 1, where f;  X--~ X '  is the inclusion. 

REMARK. If n > 3 then the hypothesis on a holds automatically and the 
conclusion concerning/3 simply says that fl is perfect. In fact, if n _-> 3 then 

Hn +2(a, n ) ~ a /2a ,  which is finitely generated and perfect. [More generally, one 

can show that H.§ (a, n) is finitely generated and perfect for n > k.] 

PROOF OF THEOREM 6. Let ) f  be the universal cover of X and let 

p: f ( - - ->K(a,  n)  be the canonical map of 3f to the first non-trivial space in its 

Postnikov decomposition. From the Serre spectral sequence of p we obtain an 

exact sequence of ~--modules, 

H.  +2(X)--> H.  +2(a, n )--->/3 ---> H. +,(X'). 
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Since X is a complex of finite type, H,+,(/~) is a finitely generated r 
the finite generation of /3 therefore follows from that of Hn§ n). Further- 

more, it is easy to see that H~(.~) is perfect for q > 0 ,  so H,+,(.~)^ = 0  = 

H,§ ^. We therefore obtain an isomorphism H n §  by applyingthe 

completion functor to the above exact sequence (2.1, Prop 3(i)). Finally, let 

q~:/3---~43' be as in the statement of the theorem; then d~ is an HZ-map  of 

r modules (2.2, Cor. 1 of Th. 3), so Lemma 6.2 of [2] implies that we can attach 

cells to X to obtain a space X'  with the desired properties. It is clear from the 

proof of that lemma that only finitely many cells are required.) 

Appendix. The homology (rood ~)  ot a regular covering space 

In this appendix we will prove a result about covering spaces (Prop. 5 below), 

the first corollary of which was needed in Section 3.1, and we will show it can 

be used to extend to nilpotent spaces Serre's mod q~ Hurewicz theorem for 

simply connected spaces (see Prop. 6 below). 

Let R be a commutative ring and let qg be a Serre's class of R-modules,  i.e., 

contains 0 and is closed under submodules, quotient modules, and exten- 

sions. Assume that ~ has the following property: 

(*) If M, N ~ qr then Tor~(M, N) E qr for all p >= O. 

PROPOSITION 5. Let : f ( ~  X be a regular covering map of path-connected 

spaces, let G be the group of covering transformations, and let n be a positive 

integer. Assume that Hp(G,R)ECr for each p > 0  and that HI(X,R)  is a 

nilpotent G-modide for i < n. Then the following conditions are equivalent: 

(i) H , ( )~ ' ,R )E~  for l<=i<n.  

(ii) Hi(X, R) E ~ for 1 <= I < n. 

Furthermore, (i) and (ii) imply: 

(iii) p induces a qg-isomorphism 

H~(fif, R ) o - ~  H n ( X , R ) .  
qg 

(Note: For any R[G]-module  M, we denote by Me the R-module 

Ho(G, M ) =  M/IM, where I is the augmentation ideal of R[G].)  

COROLLARY 1. Let X be a nilpotent space and let X be its universal cover. If  

H~(X) is finitely generated for each i then so is H~(X). 

In fact, it is not hard to show that H,(f()  is a nilpotent G-module each i, 

where G = rr,X. [Prove inductively that G acts nilpotently on the homology of 
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the Postnikov approximations to .~. Alternatively, apply Lemma 5.4 of [3], 
Chap. II, w to the fibration f(---~X---~K(G, 1).] Moreover, since H , ( G ) =  

H,(X)  is finitely generated, Lemma l(a) below shows that F,G/F,+,G is finitely 

generated for each i, and it follows easily that Hp(G) is finitely generated for 

each p. We can therefore apply the proposition to the covering map X ~ X ,  

with R = Z and cr equal to the class of finitely generated abelian groups, and 

the corollary follows at once. 

COROLLARY 2. Let [ : f(---~ X be a regular covering map of degree a power o[ 

a prime p. I f  H~(X,'Z/p Z) is finite for each i, then so is H;(5(;Z/pZ). 

In fact, one knows that if G is a finite p-group and k is a field of 

characteristic p, then every k [G ]- module is niipotent (cf. [19], Chap. IX, w 

Cor. of Th. 2). The corollary therefore follows from the proposition, applied 

with R - -Z /pZ and ~' equal to the class of finite R-modules. 

The proof of Proposition 5 requires two lemmas. 

LEMMA 1. Let G be a group such that H,(G, R) E ~. 

(a) Letting {F~G}~, be the lower central series of G, the R-modules 

R Qz(F,G/F,+,G) are in ~ for all i >= 1. 

(b) If M is an R [G]-module such that Me E ~g, then PM/I '+ 'M E c~ [or all 

i >- O, where I is the augmentation ideal o fR  [G]. In particular, i f M  is nilpotent, 

then M E qg. 

To prove (a), recall that the commutator map G x F~G~F~+,G induces by 

passage to the quotient a Z-bilinear map G.b x F~G/F~§ ~ F~+,G/F,+2G, where 

G.b is the abelianization FtG/F2G of G, cf. [12], p. 329, for example. This yields 
by extension of scalars an R-module homomorphism 

(R |  ) |  (g | /r, +, G)) ~ R |  +, G/r, +.G ), 

which is clearly surjective by the definition of F,+,G. Since R@zG,b = 

H,(G, R) ~ cr the result follows by induction on i from the fact that cr is closed 

under tensor products and quotients. 

Similarly, to prove (b), note that the multiplication map I@,PM--~I'+~M 

induces an epimorphism 
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(I/I2)QR (I'M/I'+'M) --, i,+, M/I,+2M. 

Since I / I  2~- H,(G,R) (cf. [4], p. 184, formula (4)), (b) follows at once by 

induction on i. 

LEMMA 2. Let G be a group such that Hp ( G, R) E qg [or all p > O. I[ M is a 
nUpotent R [ G ]-module whose underlying R-module is in qr then Hp ( G, M ) E  cr 

[or all p ~ O. 

Since G acts trivially on the quotients I 'M/I'*'M, which are in c~, it suffices 

to consider the case where G acts trivially on M. In this case the result follows 

from (*) and the universal coefficient spectral sequence 

E~q= Tor~(Hq(G,R),M) ~ Hp§ 

([ll] ,  Chap. I, Th. 5.5.1). 

PROOF OF PROPOSITION 5. We will use the spectral sequence 

E~ = Hp(G, H~(R, R)) ~ Hp.q(X, R). 

Note that the hypotheses imply that E~o ~ ~ for p > 0. Assuming now that (i) 

holds, Lemma 2 implies that E~q ~ ~ for I =< q < n and all p _--> 0, whence, by a 

standard spectral sequence argument, (ii) and (iii) hold. It remains to prove that 

(ii) implies (i). Assuming that (ii) holds, and assuming inductively that 

Hi(X, R) ~ ~ for l =< j < i (where i is fixed, i =< j < n), it follows from what we 

have just proved that is there a R-isomorphism 

H~(X,R)c-% H, (X ,R) ,  

hence H~()(, R)a C % But HI(.Y, R) is a nilpotent R [G]-module,  so Lemma 1 
(b) implies that Hi(X', R ) E  c~, as required. 

We now specialize to the case R = Z, and we assume that c~ satisfies, in 

addition to (*), the following property: 

(**) If  G E ~  then H p ( G ) E ~  for all p >O. 

If G is a nilpotent group such that F~G/F,+,G E qg for each i _-> 1, then we will 

say, by abuse of language, that G E % It is easy to see that the conclusion of 
(**) continues to hold for such a G. 
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If X is a path-connected space, then ~r~(X, Xo) operates on or. (X, x0) for n _--- 2 

and we set 

~r" X = ~r(X, Xo)=,~x.~o~. 

(Here xo is an arbitrary basepoint, but the right-hand side is independent of xo, 

up to canonical isomorphism.) 

PROPOSITION 6. Let  X be a nilpotent space. For any integer n >= 2, the 

following conditions are equivalent: 

(i) 7r,X E Cr for l <= i < n. 

(ii) H, X E qC for l <= i < n. 

Furthermore, (i) and (ii) imply: 

(iii) The Hurewicz map ~ r ' X ~ H . X  is a q-isomorphism. 

Assume first that (ii) holds. Then (~r~X)ab E ~, so ~r,X E ~ by Lemma 1 (a). 

Letting p : X---~X be the universal cover of X, it follows that the hypotheses of 

Proposition 5 are satisfied (cf. proof of Cor. l above). We conclude that 

/-/~X E ~ for 1 _-< i < n and that p induces a cr 

(i) (H..~)~ -% H.X, 
qg 

where G = ~rlX. The mod ~ Hurewicz theorem for simply connected spaces 

[18] now implies that r E (~ for 2 =< i < n and that the Hurewicz map is a 
q-isomorphism 

(2) 7r.X --~ H.)(. 
qg 

Since zr, X ~ rriX for i _-_ 2, (i) follows at once and (iii) follows from (1) and (2) 
together with the easily verified fact that a %-isomorphism M ~ N of nilpotent 

G-modules induces a %-isomorphism Me ~ N~. [This can be deduced from 

Lemma 2 above.] Thus (ii) implies (i) and (iii). The implication ( i ) ~  (ii) is 
proved similarly. 
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